

SIEM Log Analysis Report

Log4j Exploitation & HTTP Data Exfiltration

Author: Dan Chui

Role Focus: SOC Operations

Date: January 2026

Environment: Simulated SOC Lab

1. Executive Summary

This report documents the investigation of **two security incidents involving HTTP traffic** detected in a simulated SOC environment:

1. **Log4j (Log4Shell) exploitation attempts** using malicious HTTP headers
2. **Potential data exfiltration over HTTP** identified through abnormal outbound traffic patterns

The objective of this analysis was to demonstrate **SOC-level detection, investigation, correlation, and reporting skills**, using both **packet-level inspection** and **SIEM-based analysis**.

The investigation leveraged **Wireshark**, **CyberChef**, and **Splunk** to identify indicators of compromise (IOCs), reconstruct timelines, assess risk, and recommend remediation actions.

2. Environment Overview

Tools Used

- **Wireshark** – Network packet capture and HTTP inspection
- **CyberChef** – Payload decoding and transformation
- **Splunk** – Log correlation, querying, and timeline analysis

Data Sources

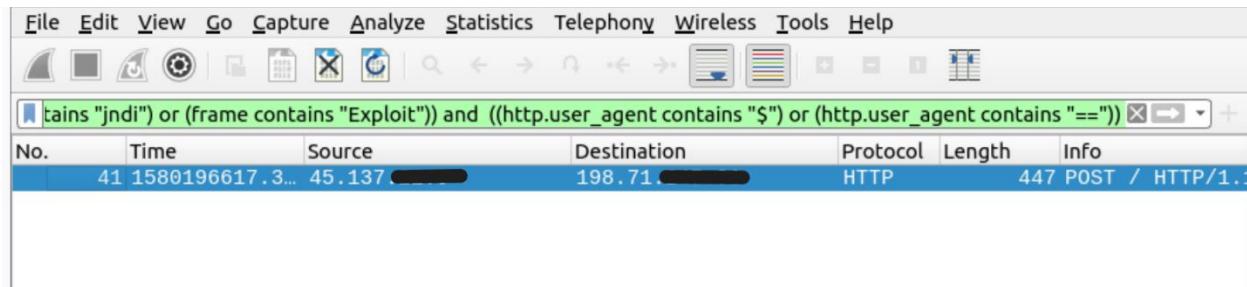
- HTTP network traffic (PCAP files)
- Web server access logs
- SIEM-ingested network and authentication logs

Scope

- Time window: Simulated attack period
- Network traffic limited to HTTP protocol
- Logs anonymized and adapted from SOC training environments

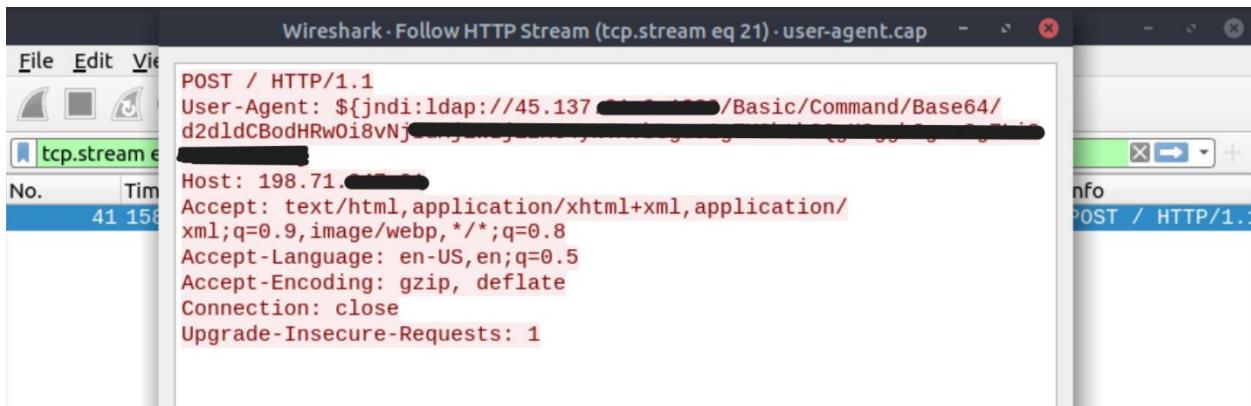
3. Scenario 1: Log4j Vulnerability Analysis

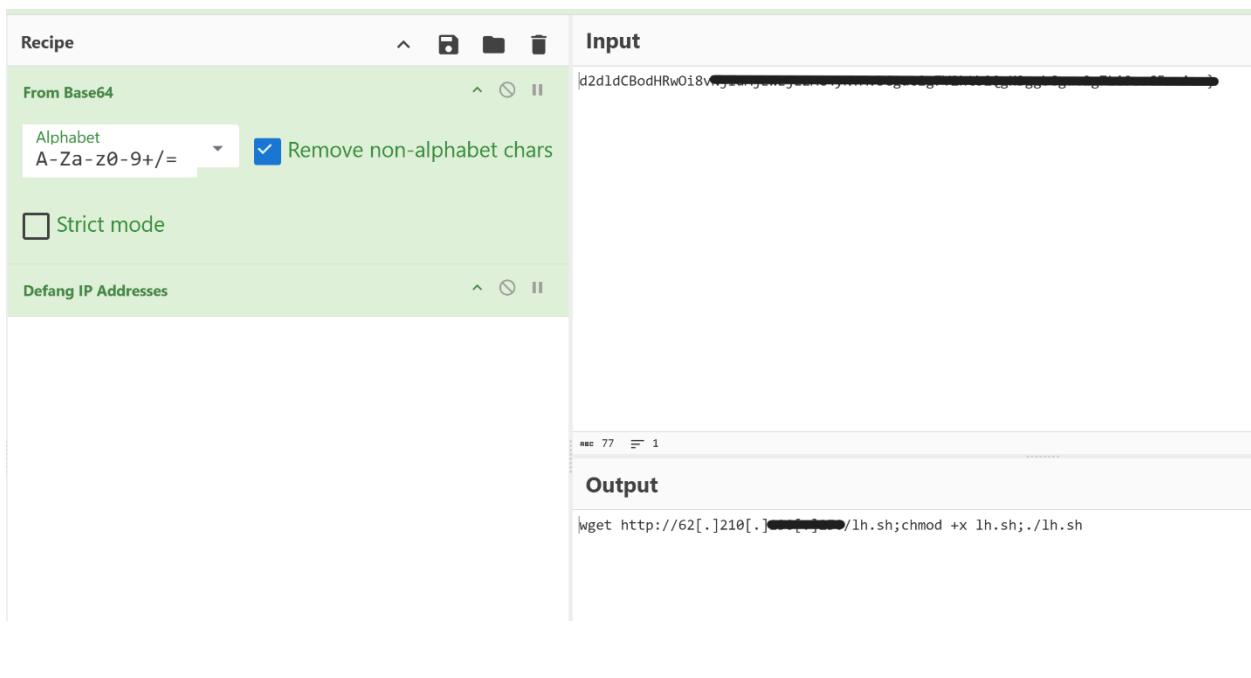
3.1 Objective


Detect and analyze **Log4j exploitation attempts** (CVE-2021-44228) delivered via HTTP requests using **JNDI injection patterns**.

3.2 Detection Method

Initial detection was performed by inspecting HTTP headers and request payloads for known **Log4Shell indicators**, including:


- \${jndi:ldap://}
- \${jndi:rmi://}
- Encoded or obfuscated JNDI strings



3.3 Evidence Observed

Indicator	Description
Suspicious HTTP Header	Malicious JNDI lookup string embedded in User-Agent
Destination	External LDAP server
Encoding	Obfuscated payload requiring decoding
Protocol	HTTP

CyberChef was used to **decode and normalize payloads**, confirming the presence of JNDI lookup attempts consistent with Log4j exploitation techniques.

3.4 Assessment

- **Attack Type:** Remote Code Execution attempt
- **Attack Stage:** Initial access
- **Success:** No evidence of successful execution observed
- **Impact:** Attempted exploitation only

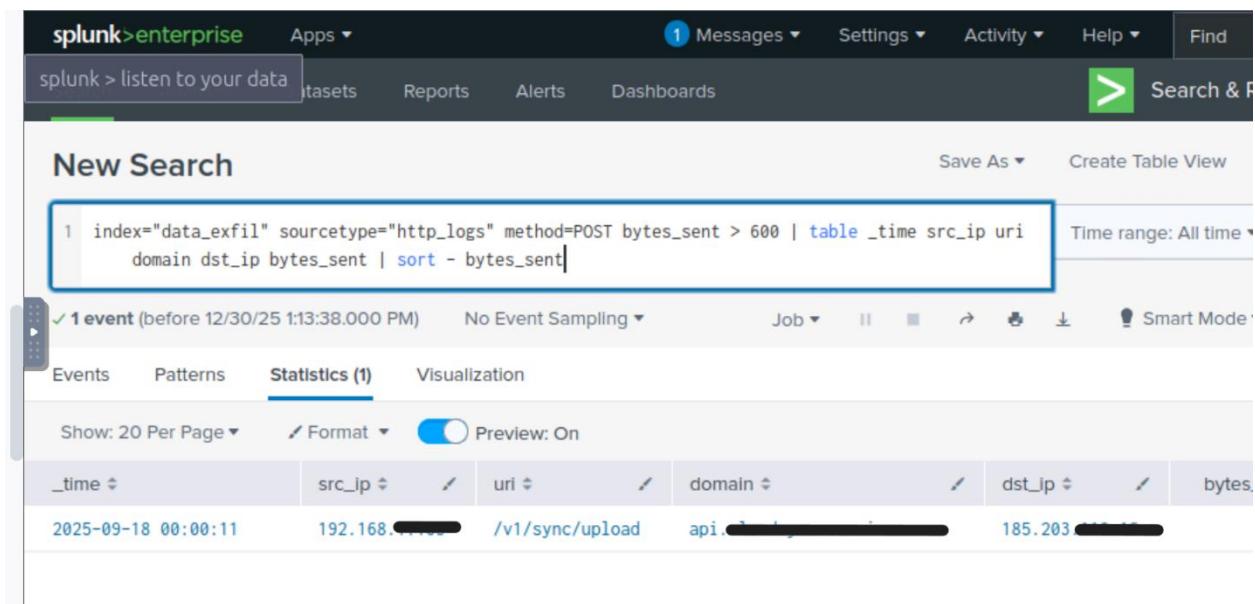
3.5 Risk Rating

Medium Risk

While exploitation was not confirmed, Log4j attacks are high-impact by nature and warrant immediate remediation and monitoring.

4. Scenario 2: Data Exfiltration via HTTP

4.1 Objective


Identify potential **data exfiltration behavior** using outbound HTTP traffic and correlate findings using SIEM analysis.

4.2 Detection Method

The investigation focused on identifying:

- Repeated outbound HTTP POST requests
- Unusual payload sizes
- Non-standard destination IPs or domains
- Abnormal request frequency

Splunk queries were used to correlate timestamps, source IPs, and traffic volume.

The screenshot shows the Splunk Enterprise search interface. The search bar contains the following query:

```
1 index="data_exfil" sourcetype="http_logs" method=POST bytes_sent > 600 | table _time src_ip uri domain dst_ip bytes_sent | sort -bytes_sent
```

The search results table shows one event:

_time	src_ip	uri	domain	dst_ip	bytes
2025-09-18 00:00:11	192.168.1.100	/v1/sync/upload	api.1.1.1.1	185.203.1.1	123456

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

http.request.method == "POST" and frame.len > 500

No.	Time	Source	Destination	Protocol	Length	Info
9	45.000000	192.168.1.100	34.120.177.193	HTTP	515	POST /index.h
21	125.000000	192.168.1.100	40.97.132.1	HTTP	512	POST /update
22	126.000000	192.168.1.100	162.125.66.1	HTTP	554	POST /update
28	154.000000	192.168.1.100	23.62.239.1	HTTP	547	POST /status
32	183.000000	192.168.1.100	40.97.132.1	HTTP	550	POST /index.h
42	254.000000	192.168.1.100	104.16.123.96	HTTP	514	POST /v1/sync
45	264.000000	192.168.1.100	44.236.72.1	HTTP	511	POST /status
58	332.000000	192.168.1.100	23.45.67.89	HTTP	558	POST /index.h
59	333.000000	192.168.1.100	104.16.123.96	HTTP	510	POST /update
70	384.000000	192.168.1.100	20.112.52.29	HTTP	555	POST /update
72	396.000000	192.168.1.100	23.45.67.89	HTTP	507	POST /index.h
75	410.000000	192.168.1.100	23.45.67.89	HTTP	551	POST /status
78	421.000000	192.168.1.100	34.120.177.193	HTTP	525	POST /update
80	432.000000	192.168.1.100	104.16.123.96	HTTP	541	POST /update
81	438.000000	192.168.1.100	40.97.132.1	HTTP	528	POST /status
83	446.000000	192.168.1.100	13.107.4.50	HTTP	563	POST /v1/sync
87	461.000000	192.168.1.100	170.114.10.1	HTTP	522	POST /index.h
101	523.000000	192.168.1.100	20.112.52.29	HTTP	543	POST /status

File

POST /v1/sync/upload HTTP/1.1
 Host: api.
 Content-Length: 654

No.

Internal Access Credentials - Finance Department
 Username:
 Password: F!n@nc3#2025
 VPN Gateway:
 SSH Key Fingerprint: SHA256:9f:3a:
 Database Connection:
 Host:
 Port: 5432
 User:
 Password: R3@d0nly!2025

 Incident Response Notes (Confidential)
 - Suspicious HTTP POST traffic observed from 10.10.
 - Payloads contain raw plaintext chunks

 File Hashes:
 secret.txt: 9c8f3e2
 backup.tar.gz: 7f6e5d4
 # End of file

Fr In Tr Hy

4.3 Evidence Observed

Indicator	Description
Traffic Pattern	Repeated outbound HTTP POST requests
Payload Size	Larger than normal baseline
Destination	External IP not previously observed
Timing	Consistent intervals suggesting automation

Wireshark confirmed the presence of **encoded data within HTTP payloads**, consistent with data staging and exfiltration behavior.

4.4 Timeline Reconstruction

1. Initial outbound HTTP communication established
2. Repeated POST requests sent at regular intervals
3. Increased payload size over time
4. No legitimate application behavior identified

4.5 Assessment

- **Attack Type:** Data exfiltration
- **Attack Stage:** Command & Control / Exfiltration
- **Success:** Partial data transmission likely
- **Impact:** Potential confidentiality breach

4.6 Risk Rating

High Risk

Confirmed abnormal outbound traffic with characteristics consistent with data exfiltration.

5. Correlation & Analysis Summary

Scenario	Detection Tool	Outcome
Log4j Exploitation	Wireshark + CyberChef	Attempted exploitation detected
Data Exfiltration	Wireshark + Splunk	Likely successful exfiltration

This demonstrates the value of **combining network visibility with SIEM correlation** in a SOC environment.

6. Recommended Actions

Immediate Actions

- Block malicious IP addresses at firewall
- Reset affected credentials
- Isolate impacted host if applicable

Preventive Measures

- Patch Log4j to latest secure version
- Enforce Web Application Firewall (WAF) rules
- Implement outbound traffic monitoring
- Enable TLS inspection where appropriate

SOC Improvements

- Improve alert thresholds for outbound HTTP anomalies
- Enhance log retention and enrichment
- Create dedicated Log4j detection alerts

7. Conclusion

This investigation demonstrates how **SOC analysts detect, investigate, and document security incidents** using layered visibility across tools.

Key takeaways:

- Early detection of Log4j exploitation is possible via HTTP inspection
- Data exfiltration often requires **correlation**, not single alerts
- Clear documentation and remediation guidance are critical SOC skills

8. Attribution

This analysis was conducted in a **simulated SOC environment** using anonymized log data adapted from a TryHackMe training exercise.

9. Appendix

Sample Detection Logic

- HTTP header inspection for JNDI strings
- Outbound POST request frequency analysis
- Payload size anomaly detection